Progress in the development of tuberculosis vaccines for cattle, goats and wildlife

Bryce Buddle

AgResearch, Hopkirk Research Institute, New Zealand
Welsh welcome
Topic: recent TB vaccine studies

• Cattle
 – BCG
 – Attenuated live vaccines
 – Subunit vaccines (DNA, protein & virus-vector)

• Goats

• Wildlife
 – Possums, badgers, wild boar and deer
Goals of vaccination against bovine TB

Reduce infection and spread of TB in cattle or wildlife species

Developing countries – prevent spread of TB in cattle

Developed countries (wildlife reservoirs of TB)
• vaccinate cattle in at risk areas (or buffer zones)
• vaccinate wildlife (maintenance hosts), if culling not possible
BCG vaccination of cattle

Advantages
- Inexpensive (low dose can be used)
- Safe
- DIVA tests to differentiate from *M. bovis* infection

Disadvantages
- Proportion of vaccinated animals react in skin test
- Protection may be incomplete
- No therapeutic effect
Summary: BCG vaccination of cattle

• Dose (10^3 to 10^6 CFU)1,2,5 similar protection

• Strain of BCG (Pasteur and Danish)8,9 similar protection

• Lyophilised v fresh culture9 similar protection

• Age of animal4,6 very young

• Pre-exposure to environmental mycobacteria3,7 + or -

\textsuperscript{Ref. Buddle et al., 1995a1;b2; 20023; 20034; 20135; Hope et al 2005a6;b7; 20118; Wedlock et al., 20089}
Vaccination with oral BCG

• Animals exposed to mycobacteria via mucosal surfaces

• Long history of oral immunisation with BCG in humans

• May reduce tuberculin skin test reactivity
Titration of oral dose of BCG (Skin test; 15 weeks post-vaccination)

<table>
<thead>
<tr>
<th>Vaccine group</th>
<th>Skin test responses (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NV</td>
<td>0.5</td>
</tr>
<tr>
<td>SC BCG</td>
<td>3.5</td>
</tr>
<tr>
<td>Oral BCG (10^8 CFU)</td>
<td>5.0</td>
</tr>
<tr>
<td>Oral BCG (10^7 CFU)</td>
<td>3.0</td>
</tr>
<tr>
<td>Oral BCG (10^6 CFU)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

* Significantly protection against challenge with *M. bovis* (Wedlock et al., 2011)
Duration of protection

Median gross pathology scores (range)

<table>
<thead>
<tr>
<th>Vaccine groups</th>
<th>Total LN score</th>
<th>Total lung score</th>
<th>Total path score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n=9)</td>
<td>11 (0.20)</td>
<td>6 (0.19)</td>
<td>16 (0.38)</td>
</tr>
<tr>
<td>BCG 10⁶ CFU (s/c; n=9)</td>
<td>7 (0.12)</td>
<td>0 (0.7)*</td>
<td>8 (0.16)*</td>
</tr>
</tbody>
</table>

24 month challenge

<table>
<thead>
<tr>
<th>Vaccine groups</th>
<th>Total LN score</th>
<th>Total lung score</th>
<th>Total path score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n=9)</td>
<td>5 (4.10)</td>
<td>5 (4.10)</td>
<td>10 (8.17)</td>
</tr>
<tr>
<td>BCG 10⁶ CFU (s/c; n=9)</td>
<td>4 (0.9)</td>
<td>4 (3.9)</td>
<td>8 (5.17)</td>
</tr>
</tbody>
</table>

- Significantly reduced scores compared to that for controls, $P<0.05$
- Ref. Thom et al., 2012
Effect of BCG revaccination in young calves

Calf vaccine groups (n=10)
- Not vaccinated
- BCG within 8 hours of birth
- BCG at 6 weeks old
- BCG 8 hours + 6 weeks

Challenge with *M. bovis* at 14-17 weeks, necropsy 4 months later

<table>
<thead>
<tr>
<th>Proportion with TB lesions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Not vaccinated</td>
<td>10/10</td>
</tr>
<tr>
<td>BCG within 8 hours of birth</td>
<td>0/10</td>
</tr>
<tr>
<td>BCG at 6 weeks old</td>
<td>1/9</td>
</tr>
<tr>
<td>BCG 8 hours + 6 weeks</td>
<td>4/10</td>
</tr>
</tbody>
</table>

Ref. Buddle et al., 2003
Animals which subsequently developed lesions had the highest post-vaccination IFN-γ responses
Long term effects of BCG vaccination and can immunity be boosted

Vaccine groups (total 79 calves)

1. Non-vaccinated (n=17)

2. S/c BCG (n=16)

3. S/c BCG, at 2 years revaccinate BCG (n=15)

4. S/c BCG, at 2 years revaccinate with *M. bovis* culture filtrate protein (CFP)/adjuvant (n=15)

5. S/c BCG, at 2 years revaccinate with biobeads displaying mycobacterial proteins, ESAT-6 and Ag85A on the surface (n=16)

Vaccinate calves at 2-4 weeks of age

Revaccinate some groups at 2 years of age

Challenged with TB at 2½ years of age and slaughter 3 months later
Whole blood IFN-γ responses to bovine PPD

A

Significant different to the non-vaccinated group, * P <0.05, ** P <0.01, *** P<0.001
Total lung and pulmonary lymph node lesion scores following challenge with *M. bovis*

BCG-revaccinated group had significantly lower lesion scores than no vaccine group (*P* < 0.001)
Serum antibody responses to *M. bovis* CFP and ESAT-6

Significant different to the non-vaccinated group, * P<0.05, **P<0.01, ***P<0.001

![Graph showing antibody responses to M. bovis CFP and ESAT-6](image-url)
Field BCG trial in cattle - Mexico

- Vaccinated 70 one to two week old calves, BCG s/c
- Equivalent number non-vaccinated

- Followed until 12 months of age

- Positive case of TB defined by the following tests
 - Tuberculin skin test
 - IFN-\(\gamma \) PPD-B
 - IFN-\(\gamma \) ESAT-6/CFP10

BCG-vaccinated group: 6 of 65 classified as TB-infected
Non-vaccinated group: 15 of 66 classified as TB-infected

Ref. Lopez-Valencia et al., 2010
Field BCG trial in cattle - Ethiopia

- Calves < 3 wks old vaccinated 10^6 CFU BCG s/c
- In contact with reactor cattle from 3 mths post-vaccination
- In-contact period 10-22 mths, then killed and necropsied

<table>
<thead>
<tr>
<th></th>
<th>Gross pathology (VL) % (n)</th>
<th>M. bovis culture +ve % (n)</th>
<th>Spread outside head and lung regions % (n)</th>
<th>Condemned at meat inspection % (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve (n=14)</td>
<td>86 % (12)</td>
<td>79 % (11)</td>
<td>21 % (3)</td>
<td>71 % (10)</td>
</tr>
<tr>
<td>BCG (n=13)</td>
<td>38 % (5)</td>
<td>31 % (4)</td>
<td>0 % (0)</td>
<td>23 % (3)</td>
</tr>
<tr>
<td>P-values</td>
<td>0.018</td>
<td>0.021</td>
<td>NS</td>
<td>0.021</td>
</tr>
<tr>
<td>(Fisher’s exact test)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ref. Ameni et al., 2010
Cattle vaccination trial:
Muzzle Station (LandcareResearch, NZ)

- Isolated farm
- TB incidence 5 -10% of cattle/yr

BCG vaccination trial
- Five cohorts of ‘free ranging’ cattle, skin-tested, +ves excluded.
- Approx. half vaccinated with BCG orally (mostly 10^8 CFU)
- Cattle inspected for TB at slaughter 1-3 yr later.
Progress results

Provisional diagnoses, some cultures pending

<table>
<thead>
<tr>
<th>Cohort birth year</th>
<th>Oral BCG Dose</th>
<th>Vaccinates</th>
<th>Non Vaccinates</th>
<th>P 2 x 2 contingency table</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 yr cattle 2006</td>
<td>10^8</td>
<td>0/30 (0.00%)</td>
<td>5/130 (3.85%)</td>
<td>0.58</td>
</tr>
<tr>
<td>1.5 yr cattle 2007</td>
<td>10^8</td>
<td>5/172 (2.91%)</td>
<td>8/118 (6.78%)</td>
<td>0.15</td>
</tr>
<tr>
<td>Weaners 2008</td>
<td>10^8</td>
<td>11/177 (6.21%)</td>
<td>12/85 (14.12%)</td>
<td>0.039*</td>
</tr>
<tr>
<td>Weaners 2009</td>
<td>10^8</td>
<td>10/167 (5.88%)</td>
<td>21/106 (19.81%)</td>
<td><0.001***</td>
</tr>
<tr>
<td>Weaners 2010</td>
<td>2×10^7</td>
<td>2/98 (2.04%)</td>
<td>7/84 (8.33%)</td>
<td>0.083</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>28/644 (4.35%)</td>
<td>53/523 (10.13%)</td>
<td><0.001***</td>
</tr>
</tbody>
</table>
Differentiate BCG-vaccinated from *M. bovis*-infected cattle (DIVA tests)

- Whole blood IFN-\(\gamma\) test (ESAT-6, CFP10, Rv3615c)\(^1\+)

- Differential skin test (ESAT-6, CFP10, Rv3615c, Rv3020c)
 - Recombinant proteins or peptides\(^2,3\)
 - Proteins displayed on biobeads\(^4\)

Ref. Vordermeier et al., 2011\(^1\); many other references\(^+\); Whelan et al., 2010\(^2\): Jones et al., 2012\(^3\); Chen et al., 2014\(^4\)
Attenuated mycobacterial TB vaccines
Attenuated *M. bovis* vaccines

- **Attenuated *M. bovis* ∆RD1 mutant**
 - Vaccination reduced TB pathology and bacterial counts (thoracic LNs)
 - Protection similar to that from vaccination with BCG
 - Neither vaccine induced IFN-γ ESAT-6/CFP10 prior to challenge

- **Attenuated *M. bovis* ∆mce2 double deletion mutant**
 - Lower histopathological lesion score for lungs and LNs v BCG group (P<0.05)

- **BCG strain overexpressing Ag85B**
 - Lower histopathological lesion score for lungs v BCG group (P<0.05)

- **BCG ∆zmp1 mutant (Zmp1 inhibit phagosome-lyosome fusion)**
 - Superior T cell memory responses v BCG

Ref. Waters et al., 2009; Blanco et al., 2013; Rizzi et al., 2012; Khatri et al., 2014
TB DNA vaccines
DNA vaccines for cattle

- DNA alone – little protection

DNA vaccines + immunopotentiators → some protection
- DNA + co-stimulatory molecules (CD80 and CD86) (Maue et al., 2004)
- DNA + adjuvant (DDA) (Cai et al., 2005)

DNA prime/ BCG boost better than BCG alone
(Skinner et al., 2003; Cai et al., 2006)

Both DNA/BCG or BCG/DNA effective
(Skinner et al., 2005)
TB protein vaccines
TB protein vaccines

- Proved difficult to induce protection against TB in cattle with protein vaccines

- Co-administration of BCG and *M. bovis* culture filtrate vaccine at adjacent sites s/c induced improved protection v BCG alone\(^1,2\)

- Display of antigens on particles (Biobeads)

- Use of Toll-like receptors to induce a CMI response
 - TLR2 – Pam3Cys, Pam3CSK4, mycobacterial PIMs\(^2\)
 - TLR4 – Lipid A, glucopyranosyl lipid A\(^3\)
 - TLR7/8 – Resiquimod\(^3\)
 - TLR9 – CpG oligonucleotides\(^1\)

Ref. Wedlock et al., 2005\(^1\); 2008\(^2\); Jones et al., 2014\(^3\)
Virus vectored TB vaccines
Vaccination/challenge doses/routes:

- MVA85A: 1×10^9 pfu, i.d.
- Ad85A: 2×10^9 pfu, i.d.
- BCG (SSI): 10^6 CFU, s.c.
- *M. bovis* (AF2122): 2000 cfu, intratracheal route
Viral vector vaccines reduced pathology with no visible (or histological) signs of infection in a proportion of animals.
Further studies with virus-vector vaccines

- Boosting with adenovirus 5 (Ad5) expressing Ag85A provided better protection than Ad5 expressing 4 mycobacterial proteins (Ad5-TBF)\(^1\)

- Dose and route of immunisation with Ad5-TBF\(^2\)
 - Strongest IFN-\(\gamma\) responses
 - 2 \(\times\) 10\(^9\) infectious units
 - Delivered intradermally

Ref. Dean et al., 2014\(^a\); b\(^2\)
Summary of TB vaccines for cattle

- New TB vaccines for cattle are promising, but no single vaccine is better than BCG

- Combinations of BCG + other TB vaccines (virus vector, protein or DNA) induced better protection than BCG alone

- BCG vaccine shown to reduce disease in experimental and field trials

- Revaccination with BCG – effective when immunity has waned

- Effective non-sensitising TB vaccine for cattle?
Caprine tuberculosis

- Goats are susceptible to *M. caprae* and *M. bovis*
 - no difference in the pathology

- *M. caprae* infection of goats
 - *M. caprae* may cause infections in cattle and humans, and problem for bovine TB diagnosis
 - Cavities in granulomas (similar to pathology in humans)

- Development of a vaccine against caprine TB
 - Assist in control of this disease in goats
 - Valuable model for development of TB vaccines in cattle and humans
Vaccination of goats against TB

- Experimental challenge - low dose of *M. caprae* endobronchially\(^1\)

- BCG vaccination (s/c) significantly reduced pathology and bacterial loads\(^2,4\)

- BCG prime/ adenovirus (Ad) - Ag85A or Ad - Ag85A/TB10.4/TB9.8/Acr2 boost improved protection \(^2,4\)

- DIVA reagents not compromised by vaccination of goats with BCG, BCG/Ad or Johne’s disease (JD) vaccine

- Vaccination of goats with JD vaccine → partial protection against *M. caprae*\(^3\)

- Aerosol challenge of goats with *M. bovis* → lung and LN pathology\(^5\)

Ref. Perez de Val et al., 2011\(^1\); 2012a\(^2\); 2012b\(^3\); 2014\(^4\); Gonzales-Juarrero et al., 2013\(^5\)
TB vaccines for wildlife

- Brushtail possums - New Zealand
- White-tailed deer - USA
- Badgers - UK and Ireland
- Wild boar - Spain
Oral BCG vaccine for possums

- Encapsulation in a lipid matrix,
 - Small numbers of BCG shed in faeces\(^1\)
 - Protect against experimental aerosol challenge with *M. bovis*
 decrease severity of disease\(^2\)
 - Protection wanes between 6 to 12 months\(^3\)

- Baits stable for 3-5 wks field conditions\(^4\)

- 85 and 100\% of possums accessed baits at bait densities 40-80 sachets/ha\(^4\)

Ref. Wedlock et al., 2005\(^1\); Aldwell et al., 2003\(^2\); Buddle et al., 2006\(^3\); Cross et al., 2009\(^4\)
Protection against natural exposure to *M. bovis* in possums

- Approx. 50% of possums orally vaccinated with BCG
- Trap every 2 mths and check for TB lesions
- Kill out all possums after 2 yrs and necropsy
- Proportion with TB lesions
 12/71 control v. 1/51 vaccinated (P<0.05)

Ref. Tompkins et al., 2009
Duration of protection

- Duration of protection following a single oral BCG

- Possums from a TB-free area were orally vaccinated with BCG released back into the field

- 28 months later, vaccinated and non-vaccinated possums captured, relocated to a PC3 unit and challenged s/c in the paw

- BCG-vaccinated group, significant reduction in LN bacterial counts

Ref. Tompkins et al., 2013
Vaccination of badgers with BCG

- BCG vaccine shown to be safe in badgers1

- Vaccination with BCG via s/c or mucous membranes3, I/mus2 or oral BCG in lipid matrix4 protected against \textit{M. bovis} challenge

- Comparison of oral vaccination with Pasteur and Danish BCG strains induced similar levels of protection against \textit{M. bovis} challenge5

- Ready uptake of buried baits, 51\% of captured badgers after 7 days6

- Modelling – revealed that combination of vaccination and culling may be more effective than either strategy alone7

- Ref. Lesellier et al., 20061; 20112; Corner et al., 20083; 20104; Murphy et al., 20145; Palphramand et al., 20126; Smith et al., 20127
Field BCG badger trials

Field trial, 3 years duration (2006-09)1
- 179 vaccinated with 10^6 CFU BCG i/mus, 83 non-vaccinated
- Vaccination reduced incidence of seroconversion by 74%

Follow up from trial, risk of unvaccinated cubs testing positive to a series of TB tests reduced significantly as proportion of vaccinated individuals in the social group increased2

Irish 3-year field trial –
- 3 zones: 100%, 50% & 0% vaccination with oral BCG
- Annual vaccination: Vaccine/placebo blind coded
- Capture/release, monitor serology, final necropsy all

On-going trials in Wales and England (licenced i/mus BCG vaccine)
- Ref. Chambers et al., 20111; Carter et al., 20122
Summary: badger vaccination

- Convincing evidence implicating badgers in spread of TB to cattle

- Culling and segregation in long term may be unsustainable for ethical, economic and practical reasons

- Vaccination is a practical method provided it is efficacious and cost-effective

- I/mus vaccination – useful to determine efficacy, practicality, costs and building confidence in the principle of vaccination
 - Issues – high cost, selection of animals trapped, welfare issues

- Oral bait – cost effective method for vaccine delivery, wide coverage
 - Issues – identify delivery system, proportion vaccinated not known, non-target species
BCG vaccination of white-tailed deer

Protection of white-tailed deer against intratonsillar challenge with *M. bovis*
- Orally with 10^9 CFU of BCG in lipid matrix or PBS\(^1\)
- Orally with 10^8 CFU of BCG in PBS\(^2\)
- Subcutaneously with 10^6 CFU Pasteur or Danish strains of BCG\(^3\)

Subcutaneous revaccination with BCG after 6 weeks did not enhance protection\(^4\), in contrast to studies in red deer\(^5\)

Ref. Nol et al., 2008\(^1\); Palmer et al., 2007\(^2\); 2009\(^3\), 2014\(^4\); Griffin et al. 1999\(^5\)
Persistence and transmission of BCG in deer

Persistence of BCG in vaccinated deer
- BCG recovered from lymphatic tissue of deer at 1, 3, 6, 9, 12 months after oral vaccination with 10^9 CFU of BCG, but not from muscle nor from any tissues after a 10^8 CFU oral dose
- BCG recovered from lymphatic tissue of deer up to 9 months after s/c vaccination with 10^6 CFU, but not from muscle

Transmission of BCG
- Immunological evidence of transmission of BCG to non-vaccinated deer co-housed with deer orally vaccinated with 10^9 CFU of BCG, but not to cattle which alternatively shared pen space with deer

Ref. Palmer et al., 2010; 2012; Nol et al., 2013
TB in Eurasian wild boar

- Wild boar – wildlife reservoirs for *M. bovis*, high densities in hunting estates and national parks (often >40 % TB prevalence in dry Mediterranean sites)

- TB in wild boar identified in at least 10 European countries

- Lesions predominantly found in head LNs (mandibular), may become generalised with lung lesions (in 50% of cases)

- Role of wild pigs as a reservoir for *M. bovis*?
Vaccination of wild boar

Selective feeders for wild boar piglets (2-4 months of age) and apply baits in early and late summer in south-central Spain

Vaccine baits- cereal-based matrix containing a capsule to deliver vaccine

Survival of BCG in baits
- No loss of viability up to 36 h in the field (temperature range 11 to 41°C)
- Loss of 2 logs by 24 h with storage at 37°C in laboratory

After oral BCG vaccination of 10^5 CFU, no isolation from tissues of piglets or from faeces from 1-71 days after vaccination

Ref. Ballesteros et al., 2011; Beltrán-Beck et al., 2012; 2014
Evaluation of TB vaccines in wild boar

- Challenge model established – 10^4 to 10^6 CFU via oropharyngeal route\(^1\)
- Vaccination - oral live BCG (10^5 CFU), oral or parenteral heat-inactivated *M. bovis* vaccine IV (10^6 bacilli)\(^2\)
 - Lower pathology and bacterial loads, but not significantly different v controls
- Revaccination – oral live BCG (10^6 CFU, 52 day interval)\(^3\)
 - Significantly lower pathology and bacterial loads v controls
- Revaccination – oral IV (10^6 CFU, 52 day interval)\(^4\)
 - Significantly lower pathology and bacterial loads v controls
- Ongoing field trial of oral BCG and IV
 - Started in 2012. 1\(^{st}\) two years yield significant reduction of piglet lesion scores in IV treatment sites v controls

Ref. Ballesteros et al., 2009, Garrido et al., 2011; Gortazar et al., 2014; Beltrán-Beck et al. 2014b
Future directions for wildlife TB vaccines

- Improvements in oral bait formulation
- Systems to avoid uptake by non-target species (attractants and delivery systems)
- New improved TB vaccines (killed or attenuated *M. bovis*)
- Therapeutic TB vaccine for wildlife?
- Field trials to demonstrate prevention or reduction of spread of *M. bovis* infection to domestic animals
Acknowledgements

AgResearch

Neil Wedlock Axel Heiser
Allison McCarthy Natalie Parlane
Art Subharat Tania Wilson
Dairu Shu Gary Yates
Geoff de Lisle Des Collins

New Zealand research groups

Frank Aldwell (Un. Otago)
Gavin Painter (IRL, NZ)
Bernd Rehm (Massey Un., NZ)
Graham Nugent, Dan Tompkins (Landcare)

Overseas research groups

Martin Vordermeier (VLA, UK)
Ian Orme, (CSU, USA)
Pauline Nol (USDA/APHIS, USA)
Angel Cataldi (INTA, Argentina)
Ray Waters (USDA, USA)
Questions?